
1 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Where the Rubber Meets
the Code – Static Code

Analysis for Software
Assurance in the

Acquisition Life Cycle

Paul R. Croll
Fellow

CSC
pcroll@csc.com

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 2 2 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Outline

• Setting the Stage for Static Code Analysis
– What is Static Code Analysis?

– The Scope of The Problem

– Testing vs. Static Code Analysis

– What Code Do You Analyze?

– A Three-Phase Code Analysis Process

– The Assurance Case

• Static Code Analysis in the Acquisition Life Cycle

• Challenges to Effective Static Code Analysis

• Useful Links

3 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Setting the Stage for
Static Code Analysis

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 4 4 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

What is Static Code Analysis?

• Static code analysis is the process of evaluating a system or component
based on its form, structure, content, or documentation. From a software
assurance perspective, static analysis addresses weaknesses in program
code that might lead to vulnerabilities

• Such analysis may be manual, as in code inspections, or automated
through the use of one or more tools

• Automated static code analyzers typically check source code but there is
a smaller set of analyzers that check byte code and binary code,
especially useful when source code in not available (e.g for COTS
components).

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 5 5 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

The Scope of The Problem

Figure 1. Estimated Number of Security Vulnerabilities

in Software Applications. Source: Capers Jones © 2008

Figure 2. Probability of Serious Security Vulnerabilities in

Software Applications. Source: Capers Jones © 2008

For military projects, as one approaches systems the size of typical large combat systems (expressed
as function points), the estimated number of security vulnerabilities rises to above 3000 and the

probability of serious vulnerabilities rises to over 45%
The statistics are much worse for civilian systems. As we move more and more into COTS and open
source software for our combat systems, one might expect that the true extent of vulnerabilities in our

systems would lie somewhere between those of military and civilian systems.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 6 6 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

COTS and Open Source Exacerbate the Problem

• Reifer and Bryant [2] studied 100 packages were selected at random from 50 public
Open-Source, COTS, and GOTS libraries
– Spanned a full range of applications and sites like SourceForge
– Over 30% of Open Source and GOTS (Government Off the Shelf) packages analyzed had dead

code
– Over 20% of the Open Source, COTS, and GOTS packages had suspected malware
– Over 30% of the COTS packages analyzed had behavioral problems

• Reifer and Bryant conclude that the potential for malicious code in applications
software is large as more and more packages are used in developing a system.

Figure 3. COTS Study Findings. Source: D. Reifer and E. Bryant, Software Assurance in
COTS and Open Source Packages, DHS Software Assurance Forum, October 2008

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 7 7 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

DoD Clarifying Guidance Regarding Open Source Softw are
(OSS) – October 16, 2009

2. GUIDANCE
a. In almost all cases, OSS meets the definition of “commercial computer software”
and shall be given appropriate statutory preference in accordance with 10 USC 2377
(reference (b)) (see also FAR 2.101(b), 12.000, 12. 101 (reference (c)); and DFARS
212.212, and 252.227-7014(a)(1) (reference (d))).
c. DoD Instruction 8500.2, “Information Assurance (IA) Implementation,” (reference
(g)) includes an Information Assurance Control, “DC PD-1 Public Domain Software
Controls,” which limits the use of “binary or machin e-executable public domain software
or other software products with limited or no warra nty,” on the grounds that these items
are difficult or impossible to review, repair, or e xtend, given that the Government does
not have access to the original source code and the re is no owner who could make such
repairs on behalf of the government. This control s hould not be interpreted as forbidding
the use of OSS, as the source code is available for review, repair and extension by the
government and its contractors.
d. The use of any software without appropriate main tenance and support presents an
information assurance risk. Before approving the us e of software (including OSS),
system/program managers, and ultimately Designated Approving Authorities (DAAs),
must ensure that the plan for software support (e.g ., commercial or Government program
office support) is adequate for mission need.

Source: DoD Chief Information Officer (CIO) Memorandum, “Clarifying Guidance Regarding
Open Source Software (OSS) in the Department of Defense (DoD),” October 16, 2009

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 8 8 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Testing vs. Static Code Analysis

• Testing requires code that is relatively complete

• Static analysis can be performed on modules or unfinished code [4]

• A static analysis tool is a program written to analyze other programs for
flaws
– Such analyzers typically check source code

– A smaller set of analyzers can check byte code and binary code

• Manual analysis, or code inspection, can be very time-consuming, and
inspection teams must know what security vulnerabilities look like in order
to effectively examine the code

• Static analysis tools are faster and don’t require the tool operator to have
the same level of security expertise as a code inspector [5]

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 9 9 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

What Code Do You Analyze?

• How do you prioritize a code review effort when you have thousands of
lines of source code, and perhaps object code to review?

• From a software assurance perspective, looking at attack surfaces is not
a bad place to start [6]
– A system’s attack surface can be thought of as the set of ways in which an

adversary can enter the system and potentially cause damage

– The larger the attack surface, the more insecure the system [7]

– Higher attack surface software requires deeper review than code in lower attack
surface components.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 10 10 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Heuristics For Code Review – 1

• Howard proposes the following heuristics as an aid to determining code
review priority [8]:
– Old code

• Older code may have more vulnerabilities than new code because newer code often reflects a
better understanding of security issues

• Code considered “legacy” code should be reviewed in depth.

– Code that runs by default
• Attackers often go after installed code that runs by default
• Such code should be reviewed earlier and deeper than code that doesn’t execute by default
• Code running by default increases an application’s attack surface

– Code that runs in elevated context
• Code that runs in elevated identities, e.g. root in *nix, for example, also requires earlier and

deeper review because code identity is another component of attack surface.

– Anonymously accessible code
• Code that anonymous users can access should be reviewed in greater depth than code that

only valid users and administrators can access

– Code listening on a globally accessible network int erface
• Code that listens by default on a network, especially uncontrolled networks like the Internet, is

open to substantial risk and must be reviewed in depth for security vulnerabilities

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 11 11 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Heuristics For Code Review – 2

– Code listening on a globally accessible network int erface
• Code that listens by default on a network, especially uncontrolled networks like the Internet, is

open to substantial risk and must be reviewed in depth for security vulnerabilities.

– Code written in C/C++/assembly language
• Because these languages have direct access to memory, buffer-manipulation vulnerabilities

within the code can lead to buffer overflows, which often lead to malicious code execution
• Code written in these languages should be analyzed in depth for buffer-overflow

vulnerabilities

– Code with a history of vulnerabilities
• Code that’s had a number past security vulnerabilities should be suspect, unless it can be

demonstrated that those vulnerabilities have been effectively removed.

– Code that handles sensitive data
• Code that handles sensitive data to should be analyzed to ensure that weaknesses in the

code do not disclose such data to untrusted users.

– Complex code
• Complex code has a higher bug probability, is more difficult to understand, and may likely

have more security vulnerabilities.

– Code that changes frequently
• Frequently changing code often results in new bugs being introduced
• Not all of these bugs will be security vulnerabilities, but compared with a stable set of code

that’s updated only infrequently, code that is less stable will probably have more vulnerabilities
in it

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 12 12 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

A Three-Phase Code Analysis Process – Phase 1

• Howard [6] also suggests a notional three-phase code analysis process
that optimizes the use of static analysis tools.

• Phase 1 – Run all available code-analysis tools
– Multiple tools should be used to offset tool biases and minimize false positives

and false negatives

– Analysts should pay attention to every warning or error
• Warnings from multiple tools may indicate that the code that needs closer scrutiny (e.g.

manual analysis).

– Code should be evaluated early, preferable with each build, and re-evaluated at
every milestone.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 13 13 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

A Three-Phase Code Analysis Process – Phase 2

• Phase 2 – Look for common vulnerability patterns
– Analysts should make sure that code reviews cover the most common

vulnerabilities and weaknesses, such as integer arithmetic issues, buffer
overruns, SQL injection, and cross-site scripting (XSS)

– Sources for such common vulnerabilities and weaknesses include the Common
Vulnerabilities and Exposures (CVE) and Common Weaknesses Enumeration
(CWE) databases, maintained by the MITRE Corporation and accessible at:
http://cve.mitre.org/cve/ and http://cwe.mitre.org/

– MITRE, in cooperation with the SANS Institute, also maintain a list of the “Top
25 Most Dangerous Programming Errors”
(http://cwe.mitre.org/top25/index.html) that can lead to serious vulnerabilities

– Static code analysis tool and manual techniques should at a minimum, address
these Top 25

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 14 14 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

A Three-Phase Code Analysis Process – Phase 3

• Phase 3 – Dig deep into risky code
– Analysts should also use manual analysis (e.g. code inspection) to more

thoroughly evaluate any risky code that has been identified based on the attack
surface, or based on the heuristics on Slides 10 and 11

– Such code review should start at the entry point for each module under review
and should trace data flow though the system, evaluating the data, how it’s
used, and if security objectives might be compromised

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 15 15 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

The Assurance Case – Capturing the Results of Static Code
Analysis as Evidence for Assurance Claims
• An Assurance Case is a set of structured assurance claims, supported by evidence and reasoning that

demonstrates how assurance needs have been satisfied [9]

– It shows compliance with assurance objectives

– It provides an argument for the safety and security of the product or service.

– It is built, collected, and maintained throughout the life cycle

– It is derived from multiple sources

• The Sub-parts of an assurance case include:

– A high level summary

– Justification that product or service is acceptably safe, secure, or dependable

– Rationale for claiming a specified level of safety and security

– Conformance with relevant standards and regulatory requirements

– The configuration baseline

– Identified hazards and threats and residual risk of each hazard and threat

– Operational and support assumptions

• An Assurance Case should be part of every acquisition in which there is concern for IT security

– Should be prepared by the supplier

– Should describe

• The assurance-related claims for the software being delivered,

• The arguments backing up those claims,

• The hard evidence supporting those arguments, including static code analysis results

16 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Static Code Analysis in
the Acquisition Life Cycle

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 17 17 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

System Engineering Technical Review Process (SETR)

• DoDI 5000.02, Operation of the Defense Acquisition System [10],
describes the System Engineering Technical Review (SETR) process
associated with the system acquisition life cycle.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 18 18 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Software CI Reviews

• The reviews typically associated with software are shown below [11]

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

Source: PEO IWS Technical Review Manual (TRM), December 2008

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 19 19 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

System Requirements Review (SRR) Objectives

• The SRR helps the PM understand the scope of the software assurance
landscape (assurance requirements, elements to be protected, the threat
environment) in which context static code analysis should be applied.

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 20 20 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

System Requirements Review (SRR) Outcomes

• Establishment of the System Assurance Case
– Specification of the top-level system assurance claims that address identified threats

to the mission.
– Identification of the approach for developing the system assurance case.

• Identification of all critical elements to be protected
– Identification of all relevant system assurance threats and their potential impact on

critical system assets.
– Identification of high-level potential weaknesses in the system
– Determination and derivation of system assurance requirements (as a subset of the

system requirements).

• Test and Evaluation Master Plan (TEMP) addressing system assurance
– Examine the TEMP to ensure testing processes are sufficient for system assurance.

This may include planning for static code analysis

• Support and Maintenance Concepts
– Documentation of the support and maintenance concepts including a description of

how assurance will be maintained.
– Description of what static code analysis tools will be used post deployment

and how and when they will be applied

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 21 21 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Preliminary Design Review (PDR) Objectives

• The PDR is a multi-disciplined technical review to ensure that the system
under review can proceed into detailed design, and can meet the stated
performance requirements within cost (program budget), schedule
(program schedule), risk, and specific assurance requirements and
constraints.

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 22 22 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Preliminary Design Review (PDR) Outcomes – 1

• Information security technology evaluation of all critical COTS/GOTS elements
– Performed as part of the analysis of alternatives.
– Includes an updated assurance case based on the design, and new weaknesses and

vulnerabilities identified.
– Results of static code analyses performed of GOTS/C OTS components.

• Which tools were used?
• What weaknesses and vulnerabilities were discovered

• Specification of assurance-specific static analysis
– Specification of assurance-specific static analysis and assurance-specific criteria to be

examined during code reviews
• Code reviews performed during implementation
• Documented in the System Engineering Plan (SEP) and Software Development Plan (SDP)
• Plan for training to use static analysis tools and for manual analysis

• Configuration management
– For Assurance, the preliminary configuration management plan must support traceability and

protection of each configuration item, including requirements and architectural elements.
• At what stages of the configuration management proc ess will static code analysis be applied?
• What configuration change events will trigger code analysis?
• What components will be analyzed?
• How will the results of the analyses be documented?

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 23 23 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Preliminary Design Review (PDR) Outcomes – 2

• Supply Chain Assurance
– For all critical elements being considered for procurement, an analysis of the

supplier and its processes should be performed
• Will the supplier perform static code analysis as p art of its code development

and/or code integration processes?

• Which components will be analyzed? Which will not?

• What tools do they plan to use?

• What are the details of their code inspection proce ss for manual security
analysis?

• How will they mitigated any discovered vulnerabilities or weaknesses?

• Assurance Case
– Updating of the assurance case with relevant evidence

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 24 24 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Additional Preliminary Design Review (PDR) Consider ations

• COTS source code is rarely available to the acquirer for independent
code review
– PMs should request COTS vendors provide Assurance Cases for their COTS

products detailing both the vendor’s secure coding practices and the results of
internal static code analysis or third party assessment (e.g. Common Criteria
certification)

– In cases where such information is unavailable, and there is still a desire to use
the COTS component, the PM should consider binary code analysis

– Such analysis could be performed either as part of the system integrator’s life
cycle process, or independently by an IV&V agent

• Ensure that a party other than the developer (such as a peer) will
independently perform static analysis and test , and that the element
being reviewed will be the element that will be delivered.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 25 25 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Critical Design Review (CDR) Objectives

• The CDR is a multi-disciplined technical review to ensure that the system
under review can proceed into system fabrication, demonstration, and
test, and can meet the stated performance requirements within cost
(program budget), schedule (program schedule), risk, and specific
assurance requirements and constraints

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 26 26 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Critical Design Review (CDR) Outcomes

• Identification and use of selected source code analy sis tools
– Selection of additional development tools and guidelines to counter weaknesses

and vulnerabilities in the system elements and development environment(s)
• These include static analysis tools for source code evaluation.

– Definition and selection of assurance-specific stat ic analyses and
assurance-specific criteria to be examined during peer reviews performed
during implementation.
• Documented in the SEP and Software Development Plan (SDP).

– Planning for training for assurance-unique static a nalysis tools and peer
reviews.

– Ensuring that another party (such as a peer) will i ndependently perform
static analysis and test , and that the element being reviewed will be the
element that will be delivered
• This counteracts the risk of a developer intentionally subverting analysis and test, as

well as aiding against unintentional errors.

• Assurance Case
– Updating of the assurance case with relevant evidence.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 27 27 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Test Readiness Review (TRR) Objectives

• The TRR is a multi-disciplined technical review to ensure that the
subsystem or system under review is ready to proceed into formal test

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 28 28 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Test Readiness Review (TRR) Outcomes

• Verification regarding static code analysis
– Verification that assurance-specific static analysi s and peer reviews of

assurance criteria have been completed
– Verification that another party (such as a peer) pe rformed static analysis

and peer review
– Selection of any additional static analysis tools t o identify or verify

weaknesses and vulnerabilities in the system elemen ts and development
environment(s)

– Completion and verification of an information security technology evaluation for
all critical COTS/GOTS elements

• Open source verification
– Identification of industry tools and test cases to be used for the testing of any

binary or machine-executable open source software products with no warranty
and no source code

– Documentation of evidence that static analysis has been performed (both
source and binary) to identify weaknesses and vulne rabilities such as
buffer overruns and cross-site scripting issues

• Assurance Case
– Updating of the assurance case with relevant evidence

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 29 29 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

System Verification Review SVR/Production Readiness Review
(PRR) Objectives
• The SVR is a multi-disciplined product and process assessment to ensure that the

system under review can proceed into low-rate initial production (LRIP) and full-rate
production (FRP) within cost (program budget), schedule (program schedule), risk,
and other system constraints

• The PRR examines a program to determine if the design is ready for production and if
the producer has accomplished adequate production planning

• The primary difference between PRR and TRR is that the system test results are
available prior to PRR
– If changes are made to the system in response to test results, it will be necessary to revisit TRR

tasks
– Any evidence provided by system test results should be incorporated into the assurance case

prior to PRR

SRR SW
CDR

SW SVR
FCA/PCA

SW
PDR

Software
Requirements
Analysis

Software
Architectural
Design

Software
Detailed
Design

Software
Coding and
Testing

Software
Integration

SW
TRR

Software
Qualification

Testing

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 30 30 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

System Verification Review SVR/Production Readiness Review
(PRR) Outcomes
• Verification regarding static code analysis

– Verification that assurance-specific static analysi s and peer reviews of
assurance criteria have been completed

– Verification that another party (such as a peer) pe rformed static analysis
and peer review.

– Selection of any additional static analysis tools t o identify or verify
weaknesses and vulnerabilities in the system elemen ts and development
environment(s)

– Completion and verification of an information security technology evaluation for
all critical COTS/GOTS elements.

• Open source verification
– Identification of industry tools and test cases to be used for the testing of any

binary or machine-executable open source software products with no warranty
and no source code.

– Documentation of evidence that static analysis has been performed (both
source and binary) to identify weaknesses and vulne rabilities such as
buffer overruns and cross-site scripting issues

• Assurance Case
– Updating of the assurance case with relevant evidence.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 31 31 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Operational Test Readiness Review (OTRR) Objectives

• The OTRR is a multi-disciplined product and process assessment to
ensure that the “production configuration” system can proceed into Initial
Operational Test and Evaluation with a high probability of successfully
completing the operational testing

• Successful performance during operational test generally indicates that
the system is suitable and effective for service introduction

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 32 32 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Operational Test Readiness Review (OTRR)

• Verification regarding static code analysis
– Re-verification that assurance-specific static anal ysis and peer reviews of

assurance criteria have been completed .
• Source code static analysis is typically not perfor med again for OTRR, but binary

analysis is performed, if appropriate.

– Re-verification that another party (such as a peer) performed static
analysis and peer review.

– Completion and verification of an information security technology evaluation for
all critical COTS/GOTS elements.

• Weaknesses and vulnerabilities evaluation
– Documentation of evidence that the system has been analyzed for

weakness and vulnerabilities using static (binary) analysis tools to
identify such flaws as buffer overruns and cross-si te scripting issues

• Assurance Case
– Updating of the assurance case with relevant evidence

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 33 33 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

In-Service Review (ISR) Objectives

• The ISR is a multi-disciplined product and process assessment to ensure
that the system under review is operationally employed with well-
understood and managed risk. This review is intended to characterize the
in-service technical and operational health of the deployed system. It
provides an assessment of risk, readiness, technical status, and trends in
a measurable form

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 34 34 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

In-Service Review (ISR) Outcomes

• Configuration Management
– Review of the configuration management process, to determine that it remains

adequate with respect to analysis of code changes, and being followed

• Weaknesses and vulnerabilities evaluation
– Documentation of evidence that any changes to the s oftware throughout

its service life have been analyzed for weakness an d vulnerabilities using
static (source or binary) analysis tools to identif y such flaws as buffer
overruns and cross-site scripting issues

• Assurance Case
– Updating of the assurance case with relevant evidence

35 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Challenges to Effective
Static Code Analysis

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 36 36 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Challenge – Procurement and Maintenance of Tools

• The better static code analysis tools are expensive
– Use multiple tools used to offset tool biases and minimize false positives and

false negatives can quickly become cost prohibitive for a single program

– In addition, maintenance agreements to ensure a tool is up to date with respect
to the spectrum of threats, weaknesses, and vulnerabilities add long term costs

• Buy it once, use it often provides the most bang for the buck

• Pooled-resources analysis labs may make economic sense.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 37 37 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Challenge – Training

• Static code analysis is not for sissies, although it may be for CISSPs
(Certified Information System Security Professionals)
– This tongue-in-cheek statement belies the difficulty in using static code analysis

tools to their best advantage
– Chandra, Chess, and Steven [12] point out that when static code analysis tools

are employed by a trained team of code analysts, false positives are less of a
concern; the analysts become skilled with the tools very quickly; and greater
overall audit capacity results.

• In order to determine the validity of static code analysis results, it is
important for PMs to understand
– The level of training that code analysts have had with the tools employed for

static code analysis
– Their understanding of code weaknesses and vulnerabilities

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 38 38 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

Useful Links

• NIST SAMATE Static Analysis Tool Survey
– The National Institutes for Science and Technology (NIST), Software Assurance

Metrics and Tool Evaluation (SAMATE) project, provides tables describing
current static code analysis tools for source, byte, and binary code analysis

– More information on SAMATE can be found at http://samate.nist.gov/

• DHS Build Security In Web Site
– A wealth of software and information assurance information, including white

papers on static code analysis tools

– More information on Build Security In can be found at
https://buildsecurityin.us-cert.gov/daisy/bsi/home. html

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 39 39 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

NIST SAMATE – Source Code Analysis Tools
http://samate.nist.gov/index.php/Source_Code_Securi ty_Analyzers.html

Tool Language(s) Avail. Finds or Checks for ------Date------

C++test C++

Parasoft
"defects, poor constructs, potentially

malicious code and other elements"
4 Apr 2006.TEST C#, VB.NET, MC++

Jtest Java

cadvise C, C++ HP

many lint-like checks plus memory leak,

potential null pointer dereference, tainted

data for file paths, and many others

11 Mar 2009

CodeCenter C CenterLine Systems

incorrect pointer values, illegal array indices,

bad function arguments, type mismatches,

and uninitialized variables

28 Oct 2005

CodeScan ASP Classic, PHP, ASP.Net CodeScan Labs
specialise in inspecting web source code for

security holes and source code issues.
14 Jul 2008

CodeSecure PHP, Java (ASP.NET soon) Armorize Technologies
XSS, SQL Injection, Command Injection,

tainted data flow, etc.
16 Mar 2007

K7 C, C++, and Java Klocwork

Access problems, buffer overflow, injection

flaws, insecure storage, unvalidated input,

etc.

6 July 2005

Ounce
C, C++, Java, JSP, ASP.NET,

VB.NET, C#
Ounce Labs

coding errors, security vulnerabilities, design

flaws, policy violations and offers

remediation

19 Apr 2007

PLSQLScanner 2008 PLSQL Red-Database-Security
SQL Injection, hardcoded passwords, Cross-

site scripting (XSS), etc.
23 Jun 2008

PolySpace Ada, C, C++ PolySpace Technologies run-time errors, unreachable code 25 Feb 2005

PREfix and PREfast C, C++ Microsoft proprietary 10 Feb 2006

Prevent C, C++ Coverity

flaws and security vulnerabilities - reduces

false positives while minimizing the

likelihood of false negatives.

11 Mar 2005

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 40 40 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

NIST SAMATE – Byte Code Analysis Tools
http://samate.nist.gov/index.php/Byte_Code_Scanners .html

Tool Lan-
guage

Avail. Finds or Checks for Date

AspectCheck
Java and .NET applications,
including ASP.NET, C#,
and VB.NET

Aspect Security proprietary security critical calls 24 Nov 2004

FindBugs™ Java class files free

null pointer deferences, synchronization
errors, vulnerabilities to malicious code,
etc. It can be linked to Java source code
to highlight the problem in the source.

23 June 2005

FxCop
.NET managed code
assemblies

free

checks for conformance to the Microsoft
.NET Framework Design Guidelines:
more than 200 defects in: Library design,
Globalization, Naming conventions,
Performance, Interoperability and
portability, Security, and Usage.

16 May 2008

Gendarme .NET Applications free
extensible rule-based tool to find
problems in .NET applications and
libraries.

30 Oct 2008

Moonwalker .NET Applications free
find deadlocks and assertion violations
in .NET programs

14 Nov 2008

Smokey .NET or Mono assemblies jesjo...@mindspring.com
correctness, design, security,
performance and other rules

13 Nov 2008

SoftCheck Inspector Java SofCheck
creates assertions for each module, tries
to prove the system obeys assertions
and the absence of runtime errors.

8 Jun 2006

XSSDetect BETA
compiled managed
assemblies (C#, Visual
Basic .NET, J#)

free

Visual Studio plugin to help find Cross-
Site Scripting vulnerabilities (CWE 79).
Ignores paths with proper encoding or
filtering

10 Jul 2008

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 41 41 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

NIST SAMATE – Binary Code Analysis Tools
http://samate.nist.gov/index.php/Binary_Code_Scanne rs.html

Tool
Lan-
guage

Avail. Finds or Checks for - - Date - -

BugScam app binaries .EXE or .DLL files SourceForge
This a package of IDC scripts for IDA Pro to look
for common programming flaws.

8 May 2003

CodeSurfer/x86 x86 executables Grammatech

A prototype system from joint research by the
University of Wisconsin and GrammaTech to
provide a platform for an analyst to understand the
workings of COTS components, plugins, mobile
code, and DLLs, as well as memory snapshots.
CodeSurfer is a source code anaylyzer.

2005

IDA Pro Window/Linux excutables DataRescue
A disassembler/debugger that can be used to
analyze security issues in binary code.

31 Jan 2008

Logiscan
J2EE, MIPS and SPARC binaries, as
well as existing Intel x86 support

LogicLab

Weaknesses such as buffer overflows, SQL
injection and cross-site scripting can be
discovered . It also offers suggestions for
appropriate security remediation via its built-in
training for secure coding. Formerly BugScan.

2005

SecurityReview Excutable of *C, C++, C#, JAVA Veracode

Automated static binary and dynamic web
application analyses to identify software flaws and
vulnerabilities, absence of security features, and
malcode including backdoors and other
unintended functionality. SecurityReview is a
security testing service provided by Veracode.

24 May 2007

Vine x86 executables BitBlaze

Vine is a component of UC Berkeley �s research
project BitBlaze. It provides an intermediate
language (ILA) that x86 code can be translated to.
It also provides analysis on the ILA, such as
abstract interpretation, dependency analysis, and
logical analysis via interfaces with theorem
provers.

20 Jan 2008

CAT.NET x86 executables Microsoft

A binary code analysis tool that helps identify
common variants of certain prevailing
vulnerabilities that can give rise to common attack
vectors such as Cross-Site Scripting (XSS), SQL
Injection and XPath Injection.

30 Dec 2009

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 42 42 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

References

[1] Jones, Capers. Overview of the United States Software Industry Results Circa 2008, June 20, 2008.

[2] Reifer, D, and Bryant, E. Software Assurance in COTS and Open Source Packages, Proceedings of the DHS
Software Assurance Forum, October 14-16, 2008.

[3] DoD Chief Information Officer (CIO) Memorandum, Clarifying Guidance Regarding Open Source Software
(OSS) in the Department of Defense (DoD), October 16, 2009

[4] Black, P. Static Analyzers in Software Engineering, CrossTalk, The Journal of Defense Software Engineering,
pp. 16-17, March-April 2009.

[5] McGraw, G. Automated Code Review Tools for Security, Computer, vol. 41, no. 12, pp. 108-111, Dec. 2008.

[6] Howard, M. Mitigate Security Risks by Minimizing the Code You Expose to Untrusted Users,
http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface, November, 2004.

[7] Manadhata, P., Tan, K, Maxion, R, and Wing, J. An Approach to Measuring a System’s Attack Surface, CMU-
CS-07-146, Carnegie Mellon University, August 2007.

[8] Howard, M. A Process for Performing Security Code Reviews, IEEE Security & Privacy, pp. 74-79, July-August
2006.

[9] ISO/IEC/IEEE CD 15026-2.3, Systems and software engineering — Systems and software assurance — Part 2:
Assurance case, February 12, 2009.

[10] DoDI 5000.02, Operation of the Defense Acquisition System, December 8, 2008.

[11] Program Executive Office (PEO) Integrated Warfare Systems (IWS) Technical Review Manual (TRM) (Draft),
Department of the Navy, Naval Sea Systems Command, Program Executive Office, Integrated Warfare Systems,
December 2008.

[12] Chandra, P., Chess, B., and Steven, J. Putting the Tools to Work: How to Succeed with Source Code
Analysis, IEEE Security & Privacy, pp. 80-83, May-June 2006.

EVENT/CLIENT NAME or Confidentiality statement 6/30/2010 9:56 AM 0710-09_NPS_Blue 43 43 DHS Software Assurance Forum Working Groups – Processes and Practices, June 22, 2010

For More Information . . .

Paul R. Croll
CSC
10721 Combs Drive
King George, VA 22485-5824

Phone: +1 540.644.6224

Fax: +1 540.663.0276

e-mail: pcroll@csc.com

